МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «КИЛЯТЛИНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА »

«Рассмотрено»

«Согласовано»

«Утверждаю»

Руководитель МО

Зам. директора по УВР

Директор МКОУ

Wagung C.M.

Магомедов М.В.

жилятлинская СОШ »

1/4

от«*30*» ______ 2023г.

Узаиров С.М.

ти 20 2023 г.

РАБОЧАЯ ПРОГРАММА

ПРЕДМЕТ: Физика

КЛАСС: 10

УЧИТЕЛЬ: Узаиров С.М.

КАТЕГОРИЯ: высшая

количество часов в неделю: 3

УМК: Г.Я.Мякишев Физика-10 М- Просвещение 20 %г.

2023-2024 учебный год

Пояснительная записка.

Рабочая программа по учебному предмету « физика» для 10 класса разработана в соответствии с требованиями документов:

-Федеральным законом от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями)

- Приказ Минпросвещения от 22. 03.2021 №115 « об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам – начального общего, основного общего и среднего общего образования»

ФГОС среднего общего образования, утверждённым приказом Минобрнауки от 17.05.2012 №413;

- СП 2.4 .3648-20 « Санитарно-эпидемиологические требования к организациям воспитания и обучения ,отдыха и оздоровления детей и молодёжи», утверждённые постановлением главного государственного врача России от 28.09.2020 № 28.
- Сан ПиН 1.2.3685-21 « Гигиенические нормативы и требования к обеспечению безопасности безвредности для человека факторов среды обитания» от 28.01.20121№2
- -Авторской программой «Примерная программа среднего общего образования по физике 10-11 классы. Базовый уровень. М., Из-во «Дрофа» 2008 год.
- Учебным планом МКОУ «Килятлинская СОШ»;
- Положением о рабочей программе МКОУ «Килятлинская СОШ».

Общие цели изучения учебного предмета «Физик» в средней школе.

-освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; о наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; о методах научного познания природы;

-овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; оценивать достоверность естественнонаучной информации;

- -развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
- -воспитание убежденности в возможности познания законов природы ,использования достижений физики на благо развития человеческой цивилизации, необходимости сотрудничества в процессе совместного выполнения задач; воспитание уважительного отношения к мнению оппонента, готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- -решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, использование приобретенных знаний и умений для рационального природопользования и охраны окружающей среды.
- -умения самостоятельно и мотивированно **организовывать** свою познавательную деятельность (от постановки до получения и оценки результата);
- -умения использовать элементы причинно-следственного и структурно-функционального анализа
- -определять сущностные характеристики изучаемого объекта, развернуто обосновыв**ать** суждения, давать определения, **приводить** доказательства;
- -умения оценивать и корректировать свое поведение в окружающей среде, выполнять экологические требования в практической деятельности и повседневной жизни.
- -понимать возрастающую роль науки, усиление взаимосвязи и взаимного влияния науки и техники, превращения науки в непосредственную производительную силу общества: осознавать взаимодействие человека с окружающей средой, возможности и способы охраны природы;

Программа направлена на реализацию личностно-ориентированного, деятельностного, проблемно-поискового подходов; освоение учащимися интеллектуальной и практической деятельности.

Общеучебные умения, навыки и способы деятельности

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Познавательная деятельность:

- -использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
- -формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;

- -овладение адекватными способами решения теоретических и экспериментальных задач;
- -приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

- -владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;
- -использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

- -владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
- -организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Общая характеристика учебного предмета «Физика» в средней школе.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы». Гуманитарное значение физики как составной части общего образования состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Особенностью предмета физики в учебном плане школы является тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.

Курс физики в программе среднего общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления.

Согласно учебному плану МКОУ «Килятлинская СОШ» предмет физика относится к области естественнонаучного цикла и на его изучение в 10 –м классе отводится 102 часа (34 учебных недели), из расчета 3 часа в неделю.

Планируемые результаты освоения учебного предмета.

Деятельность образовательной организации общего образования при обучении физике в средней школе должна быть направлена на достижение обучающимися следующих личностных результатов:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со взрослыми, сверстниками, детьми младшего школьного возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- -с формированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о переводных достижениях и открытиях мировой и отечественные науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
 - чувство гордости за российскую физическую науку, гуманизм;
 - положительное отношение к труду, целеустремленность;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание, ответственность за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения программы по физике обучающимися 10 кнасса являются:

освоение регулятивных универсальных учебных действий:

- самостоятельно определять цели, ставить и формулировать собственные задачи и образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижение поставленной раннее цели;
 - сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
 - определять несколько путей достижения поставленной цели;
 - задавать параметры и критерии, по которым можно определить, что цель достигнута;
 - сопоставлять полученный результат деятельности с поставленной заранее целью;
- осознавать последствия достижения поставленной цели деятельности, собственной жизни и жизни окружающих людей;

освоение познавательных универсальных учебных действий:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;

- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить его на основе новые (учебные и познавательные) задачи;
 - искать и находить обобщенные способы и решение задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
 - анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;

освоение коммуникативных универсальных учебных действий:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми;
- при осуществлении групповой работы быть как руководителем, так и членом проектой команды в разных ролях;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
 - согласовывать позиции членов команды в процессе над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности как перед знакомой так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
 - воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметные результаты обучения физике в 10 классе:

Физика и естественнонаучный метод познания природы

Ученик научится

- давать определения понятиям: базовые физические величины, физический закон, научная гипотеза, модель в физике и микромире, элементарная частица, фундаментальное взаимодействие;
- называть базовые физические величины, кратные и дольные единицы, основные виды фундаментальных взаимодействий. Их характеристики, радиус действия;
- делать выводы о границах применимости физических теорий, их преемственности, существовании связей и зависимостей между физическими величинами;
 - интерпретировать физическую информацию, полученную из других источников.

Ученик получит возможность научиться

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий.

Механика

Ученик научится

- давать определения понятиям: механическое движение, материальная точка, тело отсчета, система координат, равномерное прямолинейное движение, равноускоренное и

равнозамедленное движение, равнопеременное движение, периодическое (вращательное) движение;

- использовать для описания механического движения кинематические величины: радиус-вектор, перемещение, путь, средняя путевая скорость, мгновенная и относительная скорость, мгновенное и центростремительное ускорение, период, частота;
 - называть основные понятия кинематики;
- воспроизводить опыты Галилея для изучения свободного падения тел, описывать эксперименты по измерению ускорения свободного падения;
 - делать выводы об особенностях свободного падения тел в вакууме и в воздухе;
- давать определения понятиям: инерциальная и неинерциальная система отсчёта, инертность,

сила тяжести, сила упругости, сила нормальной реакции опоры, сила натяжения. Вес тела, сила трения покоя, сила трения скольжения, сила трения качения;

- формулировать законы Ньютона, принцип суперпозиции сил, закон всемирного тяготения, закон Гука;
- описывать опыт Кавендиша по измерению гравитационной постоянной, опыт по сохранению состояния покоя (опыт, подтверждающий закон инерции), эксперимент по измерению трения скольжения;
- делать выводы о механизме возникновения силы упругости с помощью механической модели кристалла;
- прогнозировать влияние невесомости на поведение космонавтов при длительных космических полетах;
 - применять полученные знания в решении задач;
- давать определения понятиям: замкнутая система; реактивное движение; устойчивое, неустойчивое, безразличное равновесия; потенциальные силы, абсолютно упругий и абсолютно неупругий удар; физическим величинам: механическая работа, мощность, энергия, потенциальная, кинетическая и полная механическая энергия;
- формулировать законы сохранения импульса и энергии с учетом границ их применимости;
- делать выводы и умозаключения о преимуществах использования энергетического подхода при решении ряда задач динамики;
- давать определения понятиям: равновесие материальной точки, равновесие твердого тела, момент силы;
 - формулировать условия равновесия;
- применять полученные знания для объяснения явлений, наблюдаемых в природе и в быту;
 - -давать определения понятиям: давление, равновесие жидкости и газа;
 - формулировать закон Паскаля, Закон Архимеда;
 - воспроизводить условия равновесия жидкости и газа, условия плавания тел;
 - применять полученные знания для объяснения явлений, наблюдаемых в природе Ученик получит возможность научиться
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;

- характеризовать системную связь между основополагающими научными понятиями: пространство, время, движение;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств.

Молекулярная физика и термодинамика

Ученик научится

- давать определения понятиям: микроскопические и макроскопические параметры; стационарное равновесное состояние газа. Температура газа, абсолютный ноль температуры, изопроцесс; изотермический, изобарный и изохорный процессы;
- воспроизводить основное уравнение молекулярно-кинетической теории, закон Дальтона, уравнение Клапейрона-Менделеева, закон Гей-Люссака, закон Шарля.
 - формулировать условия идеального газа, описывать явления ионизации;
- использовать статистический подход для описания поведения совокупности большого числа частиц, включающий введение микроскопических и макроскопических параметров;
- описывать демонстрационные эксперименты, позволяющие устанавливать для газа взаимосвязь между его давлением, объемом, массой и температурой;
 - объяснять газовые законы на основе молекулярно-кинетической теории;
- применять полученные знания для объяснения явлений, наблюдаемых в природе и в быту;
- -давать определения понятиям: теплообмен, теплоизолированная система, тепловой двигатель, замкнутый цикл, необратимый процесс, физических величин: внутренняя энергия, количество теплоты, коэффициент полезного действия теплового двигателя, молекула, атом, «реальный газ», насыщенный пар;
 - понимать смысл величин: относительная влажность, парциальное давление;
- называть основные положения и основную физическую модель молекулярно-кинетической теории строения вещества;
 - классифицировать агрегатные состояния вещества;
- характеризовать изменение структуры агрегатных состояний вещества при фазовых переходах
 - формулировать первый и второй законы термодинамики;
 - объяснять особенность температуры как параметра состояния системы;
- описывать опыты, иллюстрирующие изменение внутренней энергии при совершении работы;
 - делать выводы о том, что явление диффузии является необратимым процессом;

- применять приобретенные знания по теории тепловых двигателей для рационального природопользования и охраны окружающей среды.

Ученик получит возможность научиться

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств.

Основы электродинамики

Ученик научится

- давать определения понятиям: точечный заряд, электризация тел;

электрически изолированная система тел, электрическое поле, линии напряженности электрического поля, свободные и связанные заряды, поляризация диэлектрика; физических величин: электрический заряд, напряженность электрического поля, относительная диэлектрическая проницаемость среды;

- формулировать закон сохранения электрического заряда, закон Кулона, границы их применимости;
- описывать демонстрационные эксперименты по электризации тел и объяснять их результаты; описывать эксперимент по измерению электроемкости конденсатора;
- применять полученные знания для безопасного использования бытовых приборов и технических устройств;
- давать определения понятиям: электрический ток, постоянный электрический ток, источник тока, сторонние силы, сверхпроводимость, дырка, последовательное и параллельное соединение проводников; физическим величинам: сила тока, ЭДС, сопротивление проводника, мощность электрического тока;
 - объяснять условия существования электрического тока;
- описывать демонстрационный опыт на последовательное и параллельное соединение проводников, тепловое действие электрического тока, передачу мощности от источника к

потребителю; самостоятельно проведенный эксперимент по измерению силы тока и напряжения с помощью амперметра и вольтметра;

- использовать законы Ома для однородного проводника и замкнутой цепи, закон Джоуля-Ленца для расчета электрических;
- понимать основные положения электронной теории проводимости металлов, как зависит сопротивление металлического проводника от температуры
- объяснять условия существования электрического тока в металлах, полупроводниках, жидкостях и газах;
- называть основные носители зарядов в металлах, жидкостях, полупроводниках, газах и условия при которых ток возникает;
 - формулировать закон Фарадея;
- применять полученные знания для объяснения явлений, наблюдаемых в природе и в быту.

Ученик получит возможность научиться

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств.

Содержание учебного предмета

1. Физика и методы научного познания (1 час)

Физика - наука о природе. Научные методы познания окружающего мира и их отличия от других методов познания. Роль эксперимента и теории в процессе познания природы. Моделирование физических явлений и процессов. Научные гипотезы. Физические законы. Физические теории.

2.Механика (32 час)

Блок №1. Кинематика материальной точки. (10 часов)

Механическое движение и его виды. Относительность механического движения. Прямолинейное равноускоренное движение. Принцип относительности Галилея.

Контрольная работа №1 по теме: «Кинематика»

Блок №2 Динамика. (12 ч)

Законы динамики. Всемирное тяготение. Законы сохранения в механике. Предсказательная сила законов классической механики. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Границы применимости классической механики.

Л.Р. – 1: «Измерение коэффициента трения скольжения»

K.P.- 1

Блок №3 Законы сохранения (10 часов)

Закон сохранения импульса. Реактивное движения.

Переход потенциальной энергии в кинетическую энергию и обратно. Закон сохранения энергии.

K.P.-1

Блок №4 Статика (2 часа)

Условия равновесия тел.

3. Млекулярная физика (28 часов)

Блок №1. Основы молекулярно-кинетической теории. Уравнения состояния идеального газа (14 часов).

Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства Модель идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Давление газа. Уравнение состояния идеального газа.

Изменение давления газа с изменением температуры при постоянном объеме.

Изменение объема газа с изменением температуры при постоянном давлении.

Изменение объема газа с изменением давления при постоянной температуре.

K.P.- 1.

Блок №2. Взаимные превращения жидкостей и газов. (6 часов)

Строение и свойства жидкостей и твердых тел. Устройство психрометра и гигрометра.

Явление поверхностного натяжения жидкости. Кристаллические и аморфные тела.

Относительная влажность воздуха. Поверхностное натяжение. Расчет высоты подъёма жидкости в капилляре

K,P.-1.

Блок №3 Основы термодинамики (8 часов)

Законы термодинамики. Порядок и хаос. Необратимость тепловых процессов.

Тепловые двигатели и охрана окружающей среды. Тепловые двигатели. КПД тепловых двигателей.

K.P.-1.

4. Электродинамика (28 часов)

Блок №1. Электростатика (9 часов)

Элементарный электрический заряд. Закон сохранения электрического заряда.

Электрическое поле. Конденсаторы. Проводники, полупроводники, диэлектрики

K.P.-1

Блок №2. Законы постоянного тока. (8 часов)

Электрический ток. Закон Ома для полной цепи. Работа и мощность электрического ЭДС источника тока.

_Л.Р. -2.

K. P.- 1

Блок №3. Электрический ток в различных средах (9 часов)

Электрическая проводимость различных веществ. Электронная проводимость .Зависимость сопротивления проводника от температуры. Сверхпроводимость

Электрический ток в вакууме. Электронные пучки. Электронно-лучевая трубка

Электрический ток в жидкостях. Законы электролиза.

Электрический ток в газах. Несамостоятельный и самостоятельный разряды. Плазма.

Плазма в космическом пространстве.

K.P.- 1.

5. Лабораторный практикум (5 часов)

Л.П. № 1 «Изучение движения тела, брошенного вертикально»

Л.П. № 2 «Измерение удельной теплоемкости проводника»

- Л.П. № 3 «Измерение жесткости пружины»
- Л.П. № 4 «Проверка законов последовательного соединения»
- Л.П. №5 « Определение ЭДС источника тока».

6.Повторение (8 час)

K.P. 2

Учебно - тематическое планирование.(102 часа)

			В том числе на :				
Nº II	Наименование раздела	Кол-во часов	Уроки	Лабораторн ые работы	Контрол ьные работы		
1	Введение	1	1	0	0		
2	Механика	32	28	1	3		
3	Молекулярная физика.	28	23	1	4		
4	Электродинамика	28	23	2	3		
5	Лабораторный практикум. Повторение.	13	7	5	1		
6	Итого	102	82	9	11		

Календарно-тематическое планирование по физике в 10 классе.

No	No	Тема урока.	Количество часов.		Дата.	
			По плану.	По факту	По плану	По факту
1	1	Что изучает физика.	1	1		
		Физические явления.				
		Механика	32			
		Кинематика.	10	10		
2	1	Основные понятия	1	1		
		кинематики.				
3	2	Скорость. Равномерное	1	1		
		прямолинейное движение.				

	4	3		1	1	
	4	3	Относительность	1	1	
	5	4	механического движения.	1	1	
	3	4	Аналитическое описание	1	1	
			равноускоренного			
			прямолинейного движения.		- 1	
	6	5	Решение задач.	1	1	
			«Прямолинейное			
	_		равномерное движение»			
	7	6	Свободное падение.	1	1	
	8	7	Решение задач «Свободное	1	1	
			падение»			
	9	.8	Равномерное движение по	1	1	
			окружности.			
10		9	Решение задач «Кинематика	1	1	
			твёрдого тела»			
11	10		Контрольная работа №1	1	1	
			Динамика.	12	12	
12		1	Масса и сила. Законы	1	1	
			Ньютона,их			
			экспериментальное			
			подтверждение.			
13		2	Законы Ньютона.	1	1	
			Решение задач.			
14		3	Законы Ньютона . Их	1	1	
			экспериментальное			
			подтверждение. Решение			
			задач.			
15		4	Законы Ньютона.	1	1	
			Решение задач.			
16		5	Силы в механике.	1	1	
			Гравитационные силы.			
17		6	Сила тяжести и вес.	1	1	
18		7	Силы в механике.	1	1	
10		,	Решение задач	1	1	
19		8	Сила упругости.	1	1	
20		9	Движение тела по	1	1	
20			наклонной плоскости.	1	1	
			(Л.р.№1).			
21	10	ı	Силы трения.	1	1	
22	11		Силы трения. Решение	1	1	
22	11		задач	1	1	
23	12			1	1	
23	12		Контрольная работа №2	1	1	
	_			10	10	
24		1	Законы сохранения.	10 1	10	
	-	1	Закон сохранения импульса.			
25		2	Закон сохранения импульса.	1	1	
26			Решение задач.	4	4	
26		3	Реактивное движение.	1	1	
27		4	Работа силы.	1	1	

• 0		1 m			I
28	5	Теоремы об изменении			
		кинетической и	1	1	
		потенциальной энергии.			
29	6.	Закон сохранения	1	1	
		механической энергии.			
30	7	Закон сохранения энергии.	1	1	
		Практикум по решению			
		задач.			
31	8	ЗСЭ. Решение задач.	1	1	
32	9	Закон сохранения энергии.	-	1	
32		Практикум по решению	1	1	
		задач.	1		
33	10	Контрольная работа №3	1	1	
33	10	Контрольная работа №3	1	1	
		3.6	20		
		Молекулярная физика.	28		
		Основы МКТ.	14	14	
34	1	Строениевещества.	1	1	
		Молекула.			
35	2	Масса молекул. Количество	1	1	
		вещества.			
36	3	Экспериментальное	1	1	
		доказательство основных			
		положений МКТ.			
37	4	Строение газообразных,	1	1	
0,		жидких и твёрдых тел.	_	-	
38	5	Идеальный газ в МКТ.	1	1	
39	6	Температура и тепловое	1	1	
37		равновесие.	1	1	
40	7	1	1	1	
41	-	Абсолютная температура.	1	1	
41	8	Измерениескоростей	1	1	
10		молекул газа.	1	1	
42	9	Кристаллические и	1	1	
10	10	аморфные тела.	4		
43	10	Уравнение состояния	1	1	
		идеального газа.			
44	11	Изопроцессы и их законы	1	1	
45	12	Изопрцессы и их законы.	1	1	
		Решение задач.			
46	13	Основы МКТ. Решение	1	1	
		задач.			
47	14	Контрольная работа.№4.	1	1	
		Взаимные			
		превращения жидкостей и	6	6	
		газов.			
48	1	Насыщенный пар . Кипение.	1	1	
		Испарение жидкостей.	•	•	
49	2	Влажность воздуха и её	1	1	
.,		измерение.	1	1	
50	3	Поверхностное натяжение.	1	1	
50		поверхностное натяжение.	1	1	

51	4	Твёрдое состояние вещества.	1	1	
52	5	 	1	1	
32		Взаимные превращения жидкостей и газов	1	1	
53	6	Контрольная работа №5	1	1	
33	0		8	8	
		Основы термодинамики.	8	8	
54	1	Внутренняя энергия. Работа	1	1	
		в термодинамике.			
55	2	Количество теплоты.	1	1	
56	3	Первыйзакон	1	1	
		термодинамики.			
57	4	Применение первого закона	1	1	
		термодинамики к			
		изопроцессам.			
58	5	Решение задач. Первый	1	1	
		закон термодинамики.			
59	6	Необратимость процессов в	1	1	
		природе.			
60	7	ДВС. КПД.ДВС.	1	1	
61	8	Контрольная работа №6.	1	1	
		Электродинамика.	28	28	
		Электростатика	19	19	
62	1	Что такое электродинамика.	1	1	
		Электрон.			
63	2	Электризация тел . Закон	1	1	
		Кулона.			
64	3	Электрическое поле.	1	1	
65	4	Силовые линии	1	1	
		электрического поля.			
66	5	Проводники и диэлектрики в	1	1	
		электростатическом поле.			
67	6	Потенциальная энергия	1	1	
		заряженного тела в			
		однородном			
		электростатическом поле.			
68	7	Потенциал	1	1	
		электростатического поля			
69	8	Конденсаторы.	1	1	
70	9	Энергия заряженного	1	1	
		конденсатора.			
71	10	Электростатика. Решение	1	1	
		задач.			
72	11	Контрольная работа №7	1	1	
73	12	Электрический ток. Сила	1	1	
		тока.			
74	13	Условия существования	1	1	
		электрического тока			
75	14	Закон Ома для участка цепи.	1	1	

	1	1	1	ı	ı	
76	15	Соединение проводников. (Л.р.№2)	1	1		
77	16	Работа и мощность	1	1		
	1 -	электрического тока.				
78	17	ЭДС. Закон Ома для полной цепи	1	1		
79	18	Измерение ЭДС и	1	1		
		внутреннего сопротивления				
		источника тока (Л.Р.№3)				
80	19	Контрольная работа №8	1	1		
		Электрический ток в	9	9		
		Sickiph icekin for B				
		средах.				
81	1	Электрическая	1	1		
		проводимость веществ.				
82	2	Зависимость сопротивления	1	1		
		проводника от температуры.				
83	3	Электрический ток в	1	1		
		полупроводниках.				
84	4	Виды полупроводников.	1	1		
85	5	Решение задач по теме «Ток	1	1		
0.5	3	в средах»	1	1		
86	6	Электрический ток в	1	1		
		вакууме.				
87	7	Диоды. Несамостоятельный	1	1		
		и самостоятельный разряды.				
88	8	Электрический ток в	1	1		
		жидкостях.				
89	9	Контрольная работа №8	1	1		
		Повторение	13	13		
		изученного в 10 классе.				
		Практикум.				
90	1	Повторение тем раздела	1	1		
	_	«Механика»	1	•		
91	2	Повторение тем раздела «	1	1		
/ 1		Тювторение тем раздела « Термодинамика»		1		
92	3	Итоговая контрольная	1	1		
14		работа.	1	1		
02	1	1	1	1		
93	4	Лабораторный	1	1		
0.4	_	практикум.№3	4	1		
94	5	Лабораторный практикум	1	1		
0.5		<u>№</u> 4	4			
95	6	Работа №5	1	1		
96	7	Работа №6	1	1		
97	8	Работа №7	1	1		
98	9	Практикум по решению	1	1		
		задач.				
99	10	Практикум по решению	1	1		
		задач.				

100	11	Практикум по решению	1	1	
		задач			
101	12	Итоговый тест	1	1	
102	13	Заключительное обобщение.	1	1	